Pulsed Power Engineering: Materials & Passive Components and Devices

U.S. Particle Accelerator School University of New Mexico

Craig Burkhart & Mark Kemp SLAC National Accelerator Laboratory June 24-28, 2019

Materials & Passive Components and Devices Used in Pulsed Power Engineering

- Materials
 - Conductors
 - Insulators
 - Magnetic material
- Passive components and devices
 - Resistors
 - Capacitors
 - Inductors
 - Transformers
 - Transmission lines
 - Loads
 - Klystrons
 - Beam kickers

SLAC

Materials

- Generally encounter three types of materials in pulsed power work
 - Conductors
 - Wires & cable
 - Buss bars
 - Shielding
 - Resistors
 - Insulators
 - Cables and bushing
 - Standoffs
 - Capacitors
 - Magnetic
 - Inductors, transformers, and magnetic switches
 - Ferrite and tape-wound

Calculating Resistance

- At low frequency, resistance (R) determined by:
 - $R = \rho \ell / A$ (ohm)
 - Material resistivity, ρ (Ω•cm)
 - Conductor length, ℓ (cm)
 - Conductor cross-sectional area, A (cm²)
- At high frequency, effective conductor area decreased by "skin effect"
 - Conducted current produces magnetic field
 - Magnetic field induces eddy currents in conductor which oppose/cancel B
 - Eddy currents decay due to material resistance, allow conducted current/magnetic field to penetrate material
 - Skin depth, δ , is the effective conducted current penetration (B = B_{applied}/e)
 - δ = (2ρ/μω)^{1/2} (meters) for a current of a fixed frequency ω=2πf, or δ ≈ (2tρ/μ)^{1/2} (meters) for a pulsed current of duration t (sec)
 - Material resistivity, ρ (Ω•m)
 - Material permeability, µ (H/m)
 - $\delta = (6.6/f^{\frac{1}{2}})[(\rho/\rho_c)/(\mu/\mu_o)]^{\frac{1}{2}}$ (cm)
 - Normalized resistivity, (p/p_c) , copper resistivity, ρ_c = 1.7 X 10⁻⁸ (Ω•m)
 - Relative permeability, $\mu_r = (\mu/\mu_o)$, permeability of free space, $\mu_o = 4\pi X \ 10^{-7} (H/m)$
 - Litz wire is woven to minimize skin effects

Resistivity of Common Materials

Material	Resistivity @ 20° C
Aluminum	2.62 μΩ•cm
Be-Cu	$5.4 - 11.5 \ \mu\Omega$ •cm
Brass (66% Cu, 34% Zn)	3.9 μΩ•cm
Copper (OFHC)	1.72 μΩ•cm
Copper (water pipe)	2.1 μΩ•cm
Graphite (typical)	1.4 mΩ•cm
Gold	2.44 μΩ•cm
Indium	9 μΩ•cm
Iron	9.71 μΩ•cm
Silver	1.62 μΩ•cm
Stainless Steel (typical)	90 μΩ•cm
Steel (0.5% C)	$13 - 22 \ \mu\Omega$ •cm
Water (purified)	$2 \times 10^7 \Omega$ •cm (maximum)
Water (tap)	10 ⁴ Ω•cm
Water/CuSO ₄	25 Ω•cm (minimum)

Insulator Properties

- Insulators are used to isolate and support conductors of differing electric potential
- Typically characterized by two properties
 - Breakdown strength, E_{BD}, electric field which will arc through the material
 - Dielectric constant (relative), $\varepsilon_r = \varepsilon/\varepsilon_o$
- Regularly use solid, liquid, gaseous, and vacuum insulators in pulsed power engineering

Solid Dielectrics

SLAC

- Can be used as structural elements
- Breakdown through material is irreparable
- Can arc along surface, flashover, typically at $E \approx 0.5 E_{BD}$
- E_{BD} limited by material imperfections, voids, where corona can occur and gradually degrade material. Therefore E_{BD} decreases with increasing material thickness, as the probability of defects increases.
- 100 V/mil < E_{BD} < 1 kV/mil (typical, >0.1") 40 kV/cm < E_{BD} < 0.4 MV/cm
- 2 < ε_r < 10 (excluding ceramic capacitor materials ~10³)

Solid Dielectric Properties [1]

*Typical DC values for .10 inch thick samples

[1] From Pulse Power Formulary Y(X) \equiv Y • 10^X

USPAS Pulsed Power Engineering

Liquid Dielectrics

- SLAC
- Breakdown strength can be comparable to solids
 - Greatly reduced by introduction of contaminants
- Breakdown damage can be "healed"
 - Arcing may result in conductive (typically carbon) residue
 - Circulation will disburse residue, reduce concentration below threshold
 - Filtration/processing can remove contamination
- Oil is the most common liquid insulator used in pulsed
 power (you are not a pulsed power engineer until you have been up to your armpits in oil)

Dielectric Oils

- Mineral oils
 - Pulsed power work horse
 - Many trade names (e.g. Sontex, Diala AX), some with additives, electrical properties vary little
 - Polychlorinated Biphenyls (PCB) generally phased out in 60's, but may be present in older systems (new systems usually labeled as "PCB free")
 - Increasing concern about the toxicity/environmental impact of these oils
 - Some plastic and rubber compounds will swell if immersed in mineral oil
 - Hydroscopic (absorbs water)
 - However, it takes a lot of absorbed water to significantly degrade properties
 - Absorbed water can be removed by heating
 - Properties also degraded by air entrainment (avoid centrifugal pumps)
 - For best performance, should be circulated, filtered, de-watered and de-aerated
 - Dielectric constant: $\varepsilon_r = 2.2$ (excellent match to many polymers)
 - Breakdown strength
 - E_{BD} is weakly pulse length dependent, α t^{0.33} (see Pulsed Power Formulary)
 - Typical pulsed operation: ~ 100 400 kV/cm
 - Typical dc operation: ~40 kV/cm

Dielectric Oils (cont.)

SLAC

- Silicon oils
 - High quality
 - Expensive
- Vegetable oils: castor, rapeseed, canola, etc.
 - Increased usage
 - Low toxicity/environmental impact/high flash point
 - Properties may vary significantly from mineral oils
 - High viscosity, may not be functional at ambient temperatures
 - May support bacterial growth
 - Different dielectric constants; castor ~ 4.5
- Other "oils" used in high value applications (e.g. capacitors)
 - Isopropyl biphenyl
 - benzyltoluene diphenylethane
 - phenyl xylyl ethane
 - tricresyl phosphate
 - ethyl hexyl phthalate

Water as Dielectric

- Water and Ethylene Glycol are often used in PFLs and capacitors
 - High dielectric constants increase pulse length and energy storage
 - Water: $\varepsilon_r = 81$
 - Ethylene Glycol: $\epsilon_r = 41$
 - Because of low resistivity, can only be used for pulse-charged applications
 - RC = ρε ~ 2 μs maximum for water at 20° C (However, this can be increased to ~100 ms by mixing ethylene glycol, antifreeze, with the water and chilling the solution to near the freezing temperature.)
 - Breakdown strength
 - E_{BD} is weakly pulse length dependent, $\alpha t^{0.33-0.5}$ (see Pulsed Power Formulary)
 - Typical pulsed operation: ~ 50 200 kV/cm (~half the strength of oil)

Bulk Breakdown Field Exceeds Surface Flashover Field: SNL Z-machine

Jun. 24-28, 2019 USPAS Pulsed Power Engineering C. Burkhart & M. Kemp

SLAC

Gaseous Dielectrics

- Breakdowns cause no permanent damage
 - Used for high power switches; spark gaps, thyratrons
 - Produces gas ionization
 - Ion/electron recombination time ~ms (shorter at higher pressure)
- Dielectric constant: $\varepsilon_r = 1$ (low stored energy in stray capacitance)
- Corona (electrical discharge below the breakdown threshold) will ionize gas. This can produce chemical radicals (e.g. O_3) which can degrade system elements.
- Breakdown strength in air:
 - E_{BD} ≈ 25p + 6.7(p/d)^{1/2} (kV/cm)
 Gas pressure, p (atm absolute)

 - Conductor spacing, d (cm)
 - Relative breakdown strength of gases:
 - Air 1.0
 - Nitrogen
 - SF_6 2.7
 - H_2 0.5
 - 30% SF₆, 70% Air 2.0

SLAO

Magnetic Material Properties

- Flux swing, ΔB
 - Change in flux density to saturate ($\mu \rightarrow \mu_o$)
 - Typically remnant flux (H=0), B_r , to saturation flux, B_s : $\Delta B = B_r + B_s$
- Permeability, µ
 - $\mu(H/m) = B(T)/H(A/m)$
 - Permeability of free space, $\mu_o = 4\pi X \ 10^{-7} \text{ H/m}$
 - Relative permeability, $\mu_r = \mu/\mu_o = B(G)/H(Oe)$
 - $\mu_r \approx 25,000$ for Fe,
 - $\mu_r \approx 400$ for Carbon steel
- Hysteresis loop
 - Plot of B vs H
 - Slope is µ
 - Area is energy

RECOVERED

ENERGY

CORE LOSS

В

Magnetic Material Properties (cont.)

- Faraday's law
 - ∫ **B** d**A** = ∫ V dt
 - $A_c \Delta B = V \tau$
 - Cross sectional area of core, A_c
 - Pulse voltage, V
 - Pulse duration, τ
- Ampere's law
 - ∫ **H** d**ℓ** = I
 - $H = I/\ell_m$
 - Magnetizing current, I
 - Mean magnetic path length, $\ell_m = 2\pi (R_o R_i) / \ln(R_o / R_i)$ (log mean circumference)

Magnetic Materials

- Two types of material are typically used
 - Ferrimagnetic materials: ferrite cores
 - μ_r: ~500 2000 (typical)
 - μ_r approximately constant to >MHz for some formulations
 - ρ: ~10⁹ Ω•cm
 - ΔB: ~0.5 T
 - Ferromagnetic materials: "steel" tape-wound cores
 - ρ: ~10⁻⁵ Ω•cm
 - Eddy currents impede field penetration into material (skin effect)
 - Must be wound from thin (0.001") ribbon interleaved with insulator
 - Insulator does not have magnetic properties, effective area of magnetic material reduced by packing factor, η = insulator thickness/total thickness
 - μ_r: >10⁴
 - μ_r strong function of frequency in MHz range for even best materials
 - ΔB: >3 T
- Hysteresis characteristics of any material can be linearized by adding a gap to the core

Ferrite

- Two dominant compositions
 - NiZn
 - Highest frequency response
 - High frequency transformers & chokes, magnetic switching, induction accelerator cores
 - CN20, CMD5005, PE-11B -

- Fair-Rite 51
 - Low-loss -
 - Modest frequency response (5 MHz) -
 - Not square -

Jun. 24-28, 2019 USPAS Pulsed Power Engineering

SLAC

Ferrite

- Two dominant compositions
 - MnZn
 - Larger ∆B
 - Switch-mode power supply transformers

Tape Wound Core Materials

- Crystalline
 - Traditional core material
 - Common formulations: Si-Fe and Ni-Fe
 - Lowest cost
 - Poorest high frequency performance
- Amorphous (Metglas ©)
 - Developed in 70's/80's
 - Iron-based, Ni-Fe-based, and cobalt-based formulations
 - Low loss
 - Higher frequency response
 - Magnetic properties very dependent on annealing
 - Higher costs
- Nano-cyrstalline
 - Iron-based
 - Similar magnetic properties to Metglas
 - Zero magnetostriction

Crystalline Materials

- Si-Fe
 - ΔB > 3 T
 - µ_{max} > 25,000
 - Low frequency applications, 1 16 mil thickness
- Ni-Fe
 - ΔB ~ 1.5 T
 - µ_{max} > 25,000 (>100,000 grain oriented material)
 - Thin material, <1 mil, good at higher frequencies, but expensive

Amorphous Materials

- 2605 SA1
 - Most common Fe-based material
 - Modest high frequency response
 - Lowest cost of the amorphous materials
 - ΔB ~ 3 T
 - µ_{max} > 100,000

Typical impedance permeability curves Longitudinal field anneal

Typical dc hysteresis loops

Jun. 24-28, 2019

USPAS Pulsed Power Engineering

C. Burkhart & M. Kemp

Amorphous Materials

- 2605CO
 - Fe-based, with cobalt
 - Exceptionally square loop with longitudinal field annealing (lost tech ?)
 - Best material available for high frequency magnetic switching (0.7-mil)
 - ΔB = 3.3 T
 - $\mu_{max} \sim 100,000 (dc)$
 - $\mu_{max} \sim 6,000$ (1 µs saturation)
 - μ_{max} ~ 1,000 (0.1 μs saturation)
- 2714A
 - Co-based
 - Very square, very low loss
 - Best high frequency characteristics
 - ΔB =1 T
 - µ_{max} ~ 500,000 (dc)

Nano-crystaline Materials

- Similar high frequency permeability and squareness as 2605CO
- ΔB ~ 2 T
- $\mu_{max} \sim 60,000 (dc)$
- Major suppliers
 - Hitachi "Finemet"
 - Vacuumschmelze
 - "Russian"
- Hitachi makes excellent cores (including toroids)
 - Well annealed
 - Well constructed (ceramic insulation)

Passive Components and Devices

- Resistors
- Capacitors
- Inductors
- Transformers
- Transmission lines
- Loads
 - Klystrons
 - Beam kickers

SLAC

Resistors

-SLAC

- Resistor behavior

v(t) = Ri(t)

High-Frequency Equivalent Circuit

Resistor Types

- Film
 - Commonly available
 - Inexpensive
 - Low active material mass \rightarrow low energy capacity
 - 1W carbon film: ~3 J
 - 1W metal film: ~1 J
 - High voltage film resistors often have a helical pattern → high inductance
 - Alternative, non-inductive serpentine pattern (Caddock)
 - SMD
 - Usually trimmed with an "L-cut", introduces inductance
 - Tend to arc (and fail) at trim, due to V = L dl/dt
- Wire wound
 - Very inductive
 - Large power types (e.g. 225 W) can support large pulsed voltages, but if maintained at high voltage dc, will corona and eventually fail

Resistor Types (cont.)

- Composition
 - Large active material mass \rightarrow large energy handling capacity
 - Carbon Composition
 - 2W "standard" no longer manufactured
 - Voltage and power capacity varies by value
 - 2W: ~80 J, >2 kV repetitive, ~10 kV non-repetitive
 - Ceramic Composition
 - Ohmite OX/OY
 - Even better than carbon comps
 - 2W: ~20 kV non-repetitive
 - Bulk ceramic
 - Stackpole \rightarrow US Resistor \rightarrow Kanthal Globar / Carborundum \rightarrow Cesewid \rightarrow Kanthal Globar, but also Asian and European manufacturers
 - Vary composition for high voltage, high average power, and high peak power
 - Special coatings for immersion in oil (prevents resistance change)
 - Terminal shape and application critical for long life (corona prevention)
 - Increase average power capacity, ~7X, by flowing water through bore

Resistor Types (cont.)

- Water resistors
 - Typically constructed with insulating tubing (plastic, flexible or rigid, or glass) envelope which contains water with electrodes at each end
 - May be sealed, resistance usually not very stable, or recirculating which can be accurately adjusted
 - Resistivity strongly dependent on water temperature
 - "Salt" is added to provide carriers
 - CuSO₄
 - Borax, environmentally benign
 - NaCl
 - KCI
 - Current density on electrodes limited by carrier density (solubility limits)
 - Exceeding j_{critical} (740 mA/cm² for CuSO₄) → electrode erosion and/or electrolysis
 - Large specific energy deposition \rightarrow heating \rightarrow shock wave
- Beam sticks
 - Vacuum diode: $I = \mu V^{1.5}$
 - High power but high cost

Capacitors

- Capacitor behavior

$$i(t)$$
 (t) (t) (t)

$$q = CV$$

$$i(t) = C \frac{dV(t)}{dt} \quad : \quad \langle i \rangle = C \frac{\Delta V}{\Delta t}$$

$$V = \frac{1}{C} \int i(t) dt$$

High-Frequency Equivalent Circuit ESR \equiv parasitic resistance ESL \equiv parasitic inductance DF \equiv dissipation factor = R ω C

SLAC

Capacitor Types

- Coaxial cable
 - Often acts as capacitor unintentionally
 - $C = \tau/Z$ (transit time/impedance)
- Electrolytic
 - Lossy above ~kHz
 - Low voltage, <kV
 - Energy density: ~1 J/cm³
 - Limited use in pulsed power, except slow circuits
- Mica
 - High quality
 - Stable
 - Low loss
 - Energy density: ~0.01 J/cm³
 - Limited distribution above kV, usually made to order

Capacitor Types (cont.)

- Water
 - High energy density ~0.1 J/cm³ (@200 kV/cm)
 - High voltage, ~MV
 - Due to limited resistivity, only useful in short pulse applications
 - Not commercially available
- Ceramic
 - Available to 50 kV
 - High average current types are available
 - Energy density ~0.025 J/cm³
 - Capacitance varies with voltage and temperature
 - Stability characterized by "class"
 - I, NPO, COG: most stable
 - II, X7R, Y5P: more variation
 - III: capacitance may decrease 50% at rated voltage

Film Capacitors

- -SLAC
- Most commonly used capacitor type for pulsed power applications
- Parameters
 - Voltage: to 100 kV (typically)
 - Current: to 0.25 MA
 - Lifetime: function of
 - Dielectric voltage stress: life αE^x , typically 5 < x < 9
 - Temperature: life is halved for every 10° C increase (polypropylene)
 - Voltage reversal (pulse discharge): dV/dt relative to dielectric relaxation time

Film Capacitor Construction: Dielectric Materials

- Paper (wicks "oil")
- Polymers
 - Polyester (Mylar®)
 - Polypropylene, High Crystalline Polypropylene (HCPP) best
 - Hazy films wick "oil"
- Oil/fluid (see pages 10 & 11)
- Combinations of the above

Film Capacitor Construction: Conductors

- Foil
 - Aluminum typical (zinc for ac applications)
 - High currents
 - Extended foil (instead of tabs) designs for very high current
- Metalization of dielectric films
 - Lower cost
 - Decrease volume
 - Can be made "self-healing", defects in <2% of film
 - Internal breakdown in film ablates metalization: isolates defect
 - Breakdown energy controlled by controlling metalization
 - Pattern
 - High resistivity metalization, to 0.2 k $\Omega/_{\Box}$

Film Capacitors Construction: Trade-Offs

- Film/Foil construction
 - Standard for HV pulse discharge caps
 - Energy density:
 - ~ 0.02 J/cm³, typical
 - To ~1 J/cm³, for high energy density applications (short life)
 - Life
 - Scales as V^7 for a given design
 - >20 year or 10^{10} pulses possible ($10^4 10^5$ typical for high power caps)
- Metalized film construction
 - Higher ESR
 - Lower current capacity
 - Metalization pattern can be tailored to increase current capacity
 - Can be combined with foil to increase current capacity
 - Energy density:
 - 0.1 to 0.3 J/cm³, typical
 - Life
 - Scales as V⁹ for a given design
 - >20 year or 10¹⁰ pulses possible
 - Self-healing: C drops as metalization erodes, $\Delta C = 5\%$ is end-of-life
Component Manufacturer Websites

- Capacitors
 - NWL: http://www.nwl.com/contents/view/12
 - Cornell-Dubilier: <u>http://www.cde.com/capacitors</u>
 - TDK: <u>http://www.component.tdk.com/product-portal.php</u>
 - Electronic Concepts: <u>http://www.ecicaps.com/</u>
 - Novacap: <u>http://www.knowlescapacitors.com/novacap</u>
 - CSI: <u>http://www.csicapacitors.com/</u>
 - GA/Maxwell: <u>http://www.ga.com/capacitors</u>
 - WIMA: http://www.wima.com/en_index.php
- Resistors
 - EBG Resistors: <u>http://ebgusa.com/</u>
 - RCD Components: http://www.rcd-comp.com/rcd/index.htm
 - HVR Advanced Power Components: <u>http://www.hvrapc.com/</u>
 - International Resistive Co.: <u>http://www.ttelectronicsresistors.com/</u>
 - Kanthal Globar: <u>http://www.globar.com/</u>
 - Caddock Resistors: <u>http://www.caddock.com/</u>
 - Ohmite: <u>http://www.ohmite.com/</u>

Inductors

- Inductor behavior

High-Frequency Equivalent Circuit

Henry's Law

$$V(t) = L \frac{di(t)}{dt} : \langle V \rangle = L \frac{\Delta i}{\Delta t}$$
$$i(t) = \frac{1}{L} \int V(t) dt$$

Jun. 24-28, 2019

SLAC

Magnetic Flux & Inductance

- Ampere's Law
 - $\oint H \cdot dl = \oiint J \cdot dA$
 - $Hl_c = NI$
- By definition
 - $B = \mu H = \Phi/Ac$
- Therefore
 - $\Phi = \mu A_c H = \mu Ac \operatorname{NI}/l_c$
- Faraday's Law
 - $\oint E \cdot dl = -\frac{d}{dt} \int B \cdot dA$
 - $V/N = -\frac{d}{dt}\Phi$
- Henry's Law
 - $V = L \frac{dI}{dt} = N \frac{d}{dt} \Phi = \frac{dI}{dt} \mu Ac N^2 / l_c$
 - $L = \mu Ac N^2/l_c$

SLAO

Inductor Types

- Coaxial cable
 - Often acts as inductor unintentionally
 - $L = \tau Z$ (transit time impedance)
- Current loop
 - 10 µH =
 - L = N² (a/100) [7.353 log(16a/d) 6.386] (μH)
 - N turns
 - On radius of a (inch)
 - Of d (inch) diameter conductor, (a/d > 2.5)

Inductor Types

- Solenoid
 - Ideal: $L = N^2 \mu \pi r^2 / \ell$ (SI)
 - Typical: $L = N^2 [r^2/(9r + 10\ell) (\mu H)$
 - Generally: $L = F N^2 d (\mu H)$
 - Single-layer solenoid
 - N turns
 - Radius: r
 - Diameter: d
 - Length: ł

Jun. 24-28, 2019

Inductor Types

- Toroid
 - Closed field lines, minimize interaction with adjoining components
 - $L = (N^2 \mu \ell / 2\pi) \ln(b/a)$ (H)
 - N turns
 - Toroid outer radius, b (m)
 - Toroid inner radius, a (m)
 - Toroid length/thickness, { (m)
 - Double ended for HV
 - Better voltage grading around toroid

DOUBLE ENDED TORUS

SLAO

Increasing Inductance with a High Permeability Core

- Air core: $\mu = \mu_o$
 - Constant, independent of frequency and current (subject to parasitic effects)
 - Low permeability
- "Cored" (i.e. filled with magnetic material): $\mu = \mu_o \mu_r$
 - μ_r as high as >10⁵
 - μ = f (ω , I, temperature)
 - V τ constraint
- Compromise: gapped core

SLAO

Gapped Core Inductor

- From Ampere's law
 - $NI = H_c l_c + H_g l_g$
- Flux continuity
 - $\Phi = B_c A_c = B_g A_g$
- Since $B = \mu H$

•
$$H_c = \frac{\Phi}{\mu_c A_c}$$
, $H_g = \frac{\Phi}{\mu_g A_g}$
• $NI = \Phi \left[\frac{l_c}{\mu_c A_c} + \frac{l_g}{\mu_g A_g} \right]$

- Since $N\Phi = LI$

•
$$L = \frac{N^2}{\left[\frac{l_c}{\mu_c A_c} + \frac{l_g}{\mu_g A_g}\right]}$$

Jun. 24-28, 2019

USPAS Pulsed Power Engineering

44

SLAC

Magnetic Circuit

- Magnetic flux, Φ, flows along a continuous path around core
- Flux is driven by magneto-motive force, NI
- Flux is opposed by the circuit reluctance, $\Re = l/\mu A$
- Analogy to electrical circuit
 - Φ ↔ I
 - NI \leftrightarrow V

Jun. 24-28, 2019

- $\mathcal{R} \leftrightarrow \mathsf{R}$
 - Series & parallel similarly
- NI = $\Phi \mathcal{R} = \Phi l I \mu A$

SLAC

Impacts of Gapping Inductor Core

- Total reluctance, $\mathcal{R} = \frac{l_c}{\mu_c A_c} + \frac{\iota_a}{\mu_a A_a}$
- Compare: $\frac{l_c}{\mu_c A_c}$ to $\frac{l_g}{\mu_g A_g}$ Ac \approx Ag, $\mu_c/\mu_g \sim 10^4$, $l_c/l_g \sim 10^2$

 - $\frac{l_c}{\mu_c A_c} << \frac{l_g}{\mu_g A_g}$
- Therefore
 - $\mathcal{R} \approx \frac{l_g}{\mu_g A_g}$
 - $L \approx \frac{\mu_g A_g N^2}{I} = N^2 / \mathcal{R}$
 - Inductance is decreased when the core is gapped
 - Inductance is virtually independent of μ_c
 - Inductor can store much more energy (energy mostly in gap)

Inductor Considerations

- Quality factor
 - Q = ω L / ESR (inverse of capacitor dissipation factor)
 - Energy loss per cycle / total stored energy
- Commercial inductors are generally made "to order"
 - Magna Stangenes (Stangenes Industries)

Coupled Inductors & Transformers

- Add a second winding to inductor
- By super-position, flux adds
 - $\Phi \mathcal{R} = N_p I_p + N_s I_s$
- "Ideal" transformer
 - µ_c→ ∞
 - $\mathscr{R} \to 0$
 - $N_p I_p + N_s I_s = 0$
- Faraday's law

•
$$-\frac{d}{dt}\Phi = \left(\frac{V}{N}\right)_p = \left(\frac{V}{N}\right)_s$$

• $\frac{V_p}{N_p} = \frac{V_s}{N_s}$

N_p

 $V_p(t)$

N.

SLAC

Ṽ₅(t)

Transformer Model

Ideal transformer identities
V_s/V_p = N

- $I_p/I_s = N$
- $Z_s/Z_p = N^2$

- Loss terms
 - Primary winding: R_p
 - Secondary winding: R_s
 - Equivalent core loss: R_L
- Inductance terms
 - Primary leakage: L_{Lp}
 - Secondary leakage: L_{Ls}
 - Primary (magnetization): L_p
- Winding turns
 - Primary: N_p
 - Secondary: N_s
 - Ratio: $N = N_s/N_p$

Apply Circuit Analogy to Transformer Model

Apply Circuit Analogy to Transformer Model

- Introduce flux linkage
 - $\lambda = N\Phi$ (flux linked by N-turn loop, $V = \frac{d\lambda}{dt}$)

•
$$\lambda_p = Np(\Phi_c + \Phi_{Lp}) = \frac{N_p^2}{R_c}I_p + \frac{N_p^2}{R_{Lp}}I_p + \frac{N_pN_s}{R_c}I_s$$

•
$$\lambda_s = Ns(\Phi_c + \Phi_{Ls}) = \frac{N_s^2}{R_c}I_s + \frac{N_s^2}{R_{Ls}}I_s + \frac{N_pN_s}{R_c}I_p$$

- Two-port inductance matrix

•
$$\begin{bmatrix} \lambda_p \\ \lambda_s \end{bmatrix} = \begin{bmatrix} \frac{N_p^2}{R_c} + \frac{N_p^2}{R_{Lp}} & \frac{N_p N_s}{R_c} \\ \frac{N_p N_s}{R_c} & \frac{N_s^2}{R_c} + \frac{N_s^2}{R_{Ls}} \end{bmatrix} \begin{bmatrix} I_p \\ I_s \end{bmatrix} = \begin{bmatrix} L_{11} & L_M \\ L_M & L_{22} \end{bmatrix} \begin{bmatrix} I_p \\ I_s \end{bmatrix}$$

• $\begin{bmatrix} V_p \\ V_s \end{bmatrix} = \begin{bmatrix} L_{11} & L_M \\ L_M & L_{22} \end{bmatrix} \frac{d}{dt} \begin{bmatrix} I_p \\ I_s \end{bmatrix}$
• Where $L_{11} = L_{Lp} + L_c$, $L_M = \frac{N_s}{N_p} L_c$, $L_{22} = L_{Ls} + \left(\frac{N_s}{N_p}\right)^2 L_c$
Jun. 24-28, 2019 USPAS Pulsed Power Engineering C. Burkhart & M. Kemp

Apply Circuit Analogy to Transformer Model

- Magnetizing (primary) inductance

•
$$L_p = Lc = \frac{N_p}{N_s} L_M$$

- Leakage inductances

• Primary:
$$L_{Lp} = L_{11} - \frac{N_p}{N_s} L_M$$

• Secondary:
$$L_{Ls} = L_{22} - \frac{N_s}{N_p} L_M$$

- Effective turns ratio

•
$$n_e = \sqrt{\frac{L_{22}}{L_{11}}}$$

- Coupling coefficient

•
$$k = \frac{L_M}{\sqrt{L_{11}L_{22}}}$$

Jun. 24-28, 2019

USPAS Pulsed Power Engineering

Ф<u></u>

N_p

(t)

 $I_p(t)$

N_c

ф

SLAC

 $\check{V}_{s}(t)$

 $I_{s}(t)$

Transformer Model: Practical Interpretation

- Primary (magnetizing) inductance
 - Open secondary, measure across primary
 - $L = L_p + L_{Lp}$
 - $L_p >> L_{Lp}$, measure ~ L_p
 - Open primary, measure across secondary
 - $L = N^2 L_p + L_{Ls}$ (translate L to 2ndary reference)
 - $N^2L_p >> L_{Ls}$, measure $\sim N^2L_p$
- Leakage inductance
 - Short secondary, measure across primary

$$- L = L_{Lp} + \frac{L_{Ls}}{N^2}$$

- Isolation transformer, N=1, $L_{Lp} \approx L_{Ls}$
- HV step-up transformer, $L_{Lp} \le L_{Ls}$ due to HV insulation on 2ndary

$$- L_{Lp} = (1-k)L_p$$

Jun. 24-28, 2019 USPAS Pulsed Power Engineering

C. Burkhart & M. Kemp

Transformer Applications

- Voltage/current scaling
 - HV generation
- Impedance matching
 - Few $\Omega < Z_{TL} < \sim 100 \ \Omega$
- Isolation
 - Floating ground
 - Block dc signal component

Transformer Types

- AC
 - 60 Hz
 - Step-up (neon sign), step-down (filament), isolation
 - Decrease in size with increasing frequency
- Pulse
 - Uni-polar
 - Ubiquitous in low duty factor HV applications
- -(DC)
 - Faraday's law, $\int V dt = NA \int dB$
 - $\int_0^\infty V dt \to \infty$ for DC, therefore, $NA\Delta B \to \infty$
 - Transformers get big as the frequency goes down

Pulse Transformers

- Functions
 - Voltage gain
 - Impedance matching
 - Teach humility
- Commercial pulse transformers are generally made to order

Stangenes Industries klystron transformer

Jun. 24-28, 2019

USPAS Pulsed Power Engineering

SLAO

Transformers: Practical Limitations

- Core
 - Material limitations
 - $V\tau$ constraint
 - μ = f (ω , I, temperature)
 - Typically gapped
- Primary inductance
 - $\tau_{droop} = L/R$
- Stray capacitance
 - Primary to secondary
 - In series with leakage inductance
 - Operate below self-resonance
 - Secondary inter-winding
 - Load secondary

Ideal transformer

Transmission Lines (TL)

- SLAC
- Structure that provides a fixed impedance path for the propagation of electromagnetic energy
 - Coaxial cable
 - Rf waveguide
- Impedance

•
$$Z = \sqrt{\frac{L}{c}}$$

- Propagation velocity/time

•
$$v = \frac{1}{\sqrt{\epsilon\mu}} = \frac{c}{\sqrt{\left(\frac{\epsilon}{\epsilon_o}\right)\left(\frac{\mu}{\mu_o}\right)}} = \frac{c}{\sqrt{\epsilon_r \mu_r}}$$

• For a line of length, *l*, the propagation time/delay is

•
$$\tau = \frac{l}{v} = l\sqrt{\varepsilon\mu} = \frac{l\sqrt{\varepsilon_r\mu_r}}{c}$$

Common Transmission Line Geometries

TABLE 9.3 Properties of Common Transmission Lines, TEM Modes^a

from "Principles of Charged Particle Acceleration," S. Humphries, Jr.

Jun. 24-28, 2019

USPAS Pulsed Power Engineering

Discrete Element Transmission Line Approximation

Figure 9.29 Coaxial transmission line. (a) Physical basis for lumped circuit element model of TEM wave propagation. (b) Lumped circuit element analog of a coaxial transmission line.

from, "Principles of Charged Particle Acceleration," S. Humphries, Jr.

Jun. 24-28, 2019

USPAS Pulsed Power Engineering

C. Burkhart & M. Kemp

3L

Transmission Line Terminations

- Matched:
$$R = Z_0$$
, $V_T = V_1$, $V_R = 0$

- Open: $R = \infty$, $V_R = V_1$, $V_T = 2V_1$
- Short: R = 0, $V_R = -V_I$, $V_T = 0$
- General
 - Reflection coefficient $\Gamma = \frac{R-Z_o}{R+Z_o}$
 - Transmission coefficient $T = \frac{2R}{R+Z_0}$
 - $T \Gamma = 1$
 - $V_T = TV_1$ $I_T = V_T/R = TV_1/R$

 - $V_{R} = \Gamma V_{I}$ $I_{R} = V_{R}/Z_{0} = \Gamma V_{I}/Z_{0}$

Jun. 24-28, 2019

USPAS Pulsed Power Engineering

- V_I : Incident voltage
- V_R : Reflected voltage
- V_T : Transmitted voltage
- $V_{I} = V_{T} V_{R}$
- I_I : Incident current = V_I/Z_O
- I_R : Reflected current
- I_T : Transmitted current
- $I_1 = I_T + I_R$

Wave Model of Voltage Charged Transmission Line

- Section of transmission charged to voltage, V_o, "open" at both ends
- Equivalent model
 - Propagating wave of voltage V_o/2 traveling left to right
 - Encounters open at end of line and reflects, same polarity and equal magnitude
 - Sum of left and right going waves is V_o
 - When left to right going wave reaches open at end it reflects and replenishes right to left going wave
- Implication: if line is connect to matched load, $V_T = V_1 = V_0/2$

Wave Model of Current Charged Transmission Line

- Section of transmission charged to current, I_o, "shorted" at both ends

SLAC

- Equivalent model
 - Propagating wave of current $I_o/2$ (and voltage $I_o Z_o/2$) traveling left to right
 - Encounters open at end of line and reflects, opposite polarity and equal magnitude
 - Sum of left and right going waves is $I = I_o$ and V = 0
 - When left to right going wave reaches short at end it reflects and replenishes right to left going wave

Analysis of TL Step Response: Bounce Diagrams

- At time, t=0, the switch closes and the perfect voltage source (Z=0) is applied to the transmission line of length, τ/v .
 - At t=0, a wave of voltage V starts to propagate down the TL
 - At $t=\tau$ the wave arrives at the mismatched load, some is reflected
 - At $t=2\tau$ the reflected wave arrives at the source, and is reflected
 - •
- Bounce diagrams are a useful tool to follow the time response

Bounce Diagram

- Horizontal axis: position
- Vertical axis: time
- Vectors: leading (or trailing) edge of TL waves, labeled with voltage (current) amplitude
 - Amplitude is product of incident wave and reflection coefficient at discontinuity
- Determine voltage (current)
 - As a function of position, at a specific time
 - As a function of time, at a specific position

SLAC

Bounce Diagram Interpretation: $t = \tau_o$

- Mark τ_o on the time axis
- Draw a horizontal line at τ_o
- Draw a vertical line from the intersection of the τ_o line and the wave vector, position z_o is the location of the leading edge of the wave
- Voltage along TL to the left of z_o is the sum of all wave vectors intersecting an imaginary line at z_o⁻, and to the right it is the sum of the vectors intersected at z_o⁺
 - $V(z < z_0, \tau_0) = V + V\Gamma_R + V\Gamma_R\Gamma_L = V(1 \frac{1}{2} + \frac{1}{2})$
 - $V(z < z_0, \tau_0) = V + V\Gamma_R + V\Gamma_R\Gamma_L + V\Gamma_R^2\Gamma_L = V(1 \frac{1}{2} + \frac{1}{2} \frac{1}{4})$

Bounce Diagram Interpretation: $z = z_o$

- Mark *z*_o on the position axis
- Draw a vertical line at z_o
- Draw a horizontal line at each intersection of the z_o line and a wave vector. Each τ_N is the time when the new wave fronts arrive at z_o
- Voltage at z_o versus time is then:
 - $0 \rightarrow \tau_1^-$ 0
 - $\tau_1^+ \rightarrow \tau_2^- \qquad V$
 - $\tau_2^+ \rightarrow \tau_3^ V + V\Gamma_R$

•
$$\tau_3^+ \to \tau_4^ V + V\Gamma_R + V\Gamma_R\Gamma_L$$

- $\tau_4^+ \rightarrow \tau_5^ V + V\Gamma_R + V\Gamma_R\Gamma_L + V\Gamma_R^2\Gamma_L$
- $\tau_5^+ \to \tau_6^ V + V\Gamma_R + V\Gamma_R\Gamma_L + V\Gamma_R^2\Gamma_L + V\Gamma_R^2\Gamma_L^2$
- The TL voltage → V as the wave transients
 "damp out" over several transit times

SLAO

Klystrons

- -SLAC
- Purpose: convert low frequency electrical power to radio frequency EM power
- Capable of producing very high peak RF power, up to ~100 MW, with a nearly constant phase and amplitude for the bulk of the output pulse

Klystron Load Constraints

- Amplifiers: output regulation limited by input regulation
 - Low level RF (LLRF)
 - Beam acceleration voltage
 - RF phase α beam voltage
 - 0.1° phase stability typically required
 - Necessitates beam voltage stability to <50 V on >100 kV, <500 ppm
 - LCLS critical stations require ~30 ppm
 - Beam focusing fields (typically solenoid current)
- Electron beam device, operates with space-charge limited emission
 - Ι_{beam}= μ V^{1.5}
 - Perveance, μ, typically ~10⁻⁶
 - $Z = V/I = 1/\mu V^{0.5}$
 - $P_{\text{beam}} = VI = \mu V^{2.5} = P_{\text{RF}} / 0.5$ (typical, RF efficiency range 30 70%)

Beam Kickers

- Purpose: selectively deflect a portion of a charged particle beam into an alternative transport channel
- Two general types
 - Lumped inductance
 - Kicker is an electromagnet
 - Beam deflected by magnetic field
 - High current modulator
 - Transmission line
 - Kicker presents a fixed impedance to the modulator
 - Terminated into a matched impedance to avoid reflections
 - Typically uses both E and B to deflect beam
 - No intrinsic rise/fall time, can be used in systems with small interbunch spacing

Lumped Inductance Kicker

- Full sine
- Half sine

SLAC

Transmission Liner Kicker

- Vacuum
 - Higher frequency fidelity
- Lumped element
 - Greater deflection field

USPAS Pulsed Power Engineering

SLAC